• تلفن: 22128545-021/ ساعت کاری:8-16:30
  • Mserc.center@gmail.com
  • تهران، اتوبان باکری جنوب خروجی بلوار فردوس خ بنفشه خ گلها
  • صفحه اصلی
  • لیست آزمایشگاهها
    • آزمایشگاه مرکزی
    • آزمایشگاه میکروسگوپ الکترونی FESEM
    • آزمایشگاه آنالیز شیمیایی
    • آزمایشگاه عملیات حرارتی
    • آزمایشگاه مغناطیس( تست VSM)
    • آزمایشگاه متالوگرافی
    • آزمایشگاه مکانیکی
    • بخش آماده سازی نمونه ها
    • آزمایشگاه خوردگی
    • آزمایشگاه پلیمر
    • آزمایشگاه نورد
  • دانلود ها
    • استاندارد
    • پیش فاکتور
    • نتایج
    • مستندات
  • فرم ها
    • فرم پرداخت
    • درخواست انجام آزمون
    • فرم همکاری
    • مشاوره تخصصی
    • فرم شکایت
  • اخبار
  • سمینارها
    • سمینارهای مهندسی مواد
حساب کاربری

مقدمه ای بر کامپوزیت ها

کامپوزیت بصورت زیر تعریف می‌شود: ماده‌ای اطلاق می‌شود که از دو فاز ماتریس و تقویت کننده تشکیل شده باشد . به ترکیب ماتریس با الیاف (یا ماده تقویت کننده) زیر ۵ درصد کامپوزیت گفته میشود. ماتریس با احاطه کردن تقویت کننده آن را در محل نسبی خودش نگه می‌دارد. تقویت کننده موجب بهبود خواص مکانیکی ساختار می‌گردد. به طور کلی تقویت کننده می‌تواند به صورت فیبرهای کوتاه و یا بلند و پیوسته باشد. برای مثال کاه گل از ساده و اولیه ترین کامپوزیت ها میباشد.

 تعریف انجمن متالورژی آمریکا : به ترکیب ماکروسکوپی دو یا چند ماده مجزا که سطح مشترک مشخصی بین آنها وجود داشته باشد، کامپوزیت گفته می‌شود.

 

دسته‌بندی کامپوزیت‌های مهندسی از لحاظ فاز زمینه :

                    · کامپوزیت‌های با زمینه سرامیکی  (CMC )

                    · کامپوزیت‌های با زمینه پلیمری (PMC )

                    · کامپوزیت‌های با زمینه فلزی (MMC )

دسته‌بندی کامپوزیت‌ها از لحاظ نوع تقویت کننده :

                    · کامپوزیت‌های تقویت شده با فیبر (FRC )

                    · کامپوزیت‌های تقویت شده توسط ذرات (PRC )

کامپوزیت‌های سبز (کامپوزیت‌های زیست‌تجزیه‌پذیر) :

در اینگونه کامپوزیت‌ها، فاز زمینه و تقویت کننده، از موادی که در طبیعت تجزیه می‌شوند، ساخته می‌شوند. در کامپوزیت‌های سبز، معمولاً فاز زمینه از پلیمرهای سنتزی قابل جذب بیولوژیکی و تقویت کننده ‌ها از فیبرهای گیاهی ساخته می‌شوند.

 

مزایای کامپوزیت ها :

مهم‌ترین مزیت مواد کامپوزیتی آن است که با توجه به نیازها، می‌توان خواص آنها را کنترل کرد. به طور کلی مواد کامپوزیتی دارای مزایای زیر هستند :

                    · مقاومت مکانیکی بالا نسبت به وزن

                    · مقاومت بالا در برابر  خوردگی

                    · خصوصیات  خستگی عالی نسبت به فلزات

                    · خواص  عایق حرارتی خوب

                    · به دلیل صلبیت بیشتر، تحت یک بارگذاری معین، خیز کمتری (بعضا ده‌ها برابر کمتر) نسبت به فلزات دارند.

                    · استحکام بالا

                    · نسبت حجم به وزن کم

                    · سبک بودن گاهی تا چندین برابر مستحکم تر از فولاد با وزنی با چندین برابر کمتر

انواع نانو کامپوزیت :

                                · نانو كامپوزیت های پلیمری

                                · نانو كامپوزیت های سرامیكی

                                · نانو كامپوزیت های سرامیك - فلز

                                · نانو كامپوزیت های زمینه فلزی

 

دسته‌بندی کامپوزیت‌های مهندسی از لحاظ فاز زمینه

 

فاز زمینه  :

                    · فاز زمینه کامپوزیت های رشته ای می تواند فلز ، پلیمر یا سرامیک باشد . معمولا از فلزات یا پلیمرها به عنوان ماده زمینه استفاده می شود زیرا انعطاف پذیری مطلوبی دارند . در کامپوزیت های زمینه سرامیکی جز تقویت کننده برای بهبود چقرمگی شکست استفاده می شود . در انتخاب ترکیب زمینه – رشته ، مهمترین عامل استحکام پیوند است [1].

 

                    · کامپوزیت‌های با زمینه سرامیکی  (CMC ) :

بدلیل مقاومت آلی در برابر اکسایش در دمای بالا ، با وجود احتمال شکست ترد ، بهترین گزینه برای استفاده در دمای بالا و تنش های شدید است . چقرمگی شکست نسل جدید و توسعه یافته کامپوزیت های زمینه سرامیکی (CMC ) که بصورت ذزه ای، رشته ای یا ویسکری از مواد سرامیکی، قابل توجه است. این بدان دلیل است که ترکی که در زمینه ایجاد می شود توسط ذرات ، رشته ها یا ویسکرها نتنها اشاعه نمی یابد بلکه از اشاعه آن ممانعت به عمل مِی آید.

کامپوزیت های زمینه سرامیکی را با روش های پرسکاری گرم ، پرسکاری ایزوستاتیک گرم وزینتر کردن فاز مذاب تولید می کند آلومینا های تقویت شده با ویسکرهای SiC   به عنوان ابزار برش در ماشین کاری آلیاژهای فلزی سخت استفاده می شود.

سراميكهاي پيشرفته داراي ويژگيهاي مطلوبي مانند سختي، استحكام بالا، تحمل دماهاي بالا، خنثايي شيميايي، مقاومت در برابر فرسايش و چگالي كم هستند. ولي در برابر بارهاي كششي و ضربه ضعيف هستند و بر خلاف فلزات، از خود انعطافپذيري نشان نميدهند و مستعد شكست تحت بارهاي مكانيكي و شوك حرارتي هستند. اگر مقايسهاي بين سراميكها و ديگر مواد داشته باشيم، بايد گفت كه سراميكها تنها گروه از مواد هستند كه در دماهاي بالا قابل استفادهاند و داراي سختي، استحكام و مدول الاستيك بالاتري از فلزات و پليمرها ميباشند. همچنين چگالي، ضريب انبساط حرارتي و هدايت الكتريكي و حرارتي كمي دارند. به ويژه چگالي و انبساط حرارتي كم سراميكها اهميت زيادي در اغلب كاربردها دارد. كه اگر چه نسبت مدول الاستيسيتة تقويت‌كننده و زمينه در كامپوزيتهاي زمينه فلزي و پلميري عموماً بين 10 و 100 است ولي براي كامپوزيت زمينه سراميكي، اين نسبت معمولاً برابر يك يا كمتر از آن است. نسبت مدول بالا در كامپوزيتهاي زمينه فلزي و پليمري، سبب انتقال موثر بار از زمينه به تقويت كننده ميشود. در حالي كه در يك كامپوزيت سراميكي، زمينه و تقويت كننده در توانايي تحمل بار اختلاف زيادي ندارد؛ به اين معنا كه هدف از ساخت كامپوزيت سراميكي، افزايش استحكام نيست. مگر آنهايي كه زمينة آنها مدول الاستيسيتة كمي دارند (مانند زمينه هاي شيشه اي).

ازحوزه هاي مهم در تهيه كامپوزيتهاي زمينه سراميكي انواع گوناگون شيشه، شيشه‌سراميكها و سراميك هايي همچون كربن، كاربيد سيليسيوم، نيتريدسيليسيوم، آلوميناتها و اكسيدها. تقويت كنندهاي مورد استفاده عبارتند از كاربيدها، بوريدها، نيتريدها و كربن. كامپوزيتهاي زمينه سراميكي تنها كامپوزيتهايي هستند كه بالاي 900 درجة سانتيگراد استحكام خود را حفظ ميكنند.

عمده ترين كامپوزيتهاي زمينه سراميكي عبارتند از :

                    · كامپوزيتهاي كربن/كربن

                    · كامپوزيتهاي آلومينا SiC

                    · كامپوزيتهايي با زمينه N4Si3   يا SiC تقويت شده با الياف پيوسته SiC   و كربن.

معمولاً كاربرد كامپوزيتهاي سراميكي به دو دستة هوافضايي و غيرهوافضايي تقسيم ميشوند. در كاربردهاي هوافضايي مسالة اصلي، عملكرد كامپوزيت است. در حالي كه در كاربردهاي غير هوافضايي عامل قيمت بسيار مهم است.

كامپوزيتهاي سراميكي با الياف پيوسته، عموماً داراي خواص مكانيكي ويژة بالايي هستند و ميتوانند در كاربردهاي هوافضايي دماي بالا به كار گرفته شوند. كامپوزيتهاي كربن/كربن با پوشش SiC   به عنوان محافظ حرارتي در شاتلهاي فضايي استفاده شده است و كامپوزيتهاي كاربيد سيليسيم/كربن مواد مناسبي براي هواپيماها هستند.

 

کامپوزیت‌های با زمینه پلیمری (PMC ) :

کامپوزیت های زمینه پلیمری از یک رزین پلیمری ( پلاستیک تقویت شده مولکول درشت ) به عنوان زمینه با رشته ای به عنوان عامل تقویت کننده تشکیل شده است . از ویژگیهای این دسته از کامپوزیت ها ، کاربرد متنوع و گسترده ، خواص خوب در دمای محیط ، سهولت ساخت و هزینه کم است . این نوع کامپوزیت ها بر اساس نوع تقویت شدن به شیشه ای ، کربنی و آرامید تقسیم می شود کامپوزیت های پلیمری رشته شیشه ای شامل رشته های شیشه ای پیوسته یا ناپیوسته در زمینه پلیمری است در آینده بجای شیشه بیشتر از کربن به عنوان رشته تقویت کننده در کامپوزیت های پلیمری استفاده خواهد شد چون رشته های کربنی بیشترین استحکام ویژه و مدول ویژه را در میان مواد رشته های تقویت کننده دارا هستند . رشته های آرامید موادی با استحکام و مدول بالا هستند که در اوایل دهه 1970 عرضه شدند .

در کامپوزیت های زمینه پلیمری ، غیر از سه نوع رشته تقویت کننده شیشه ای ، کربنی و آرامید گاه از بور ، کاربید سیلیسیم و اکسید آلومینیم در حد محدودی استفاده می شود رشته های بور در اجزا هواپیماهای نظامی ، تیغه ای پره بالگرد و برخی وسایل ورزشی بکار می رود از رشته کاربید سیلیسیم و آلومینا در راکتها ی تنیس ، مدار چاپی و دماغه مخروطی موشک استفاده می شود.

کاربردها :

فایبر گلاس یکی از پرکاربردترین کامپوزیت ‌هاست. فایبرگلاس یک کامپوزیت با زمینه پلیمری است که توسط فیبرهای شیشه تقویت شده ‌است. در ساخت بدنه جنگنده‌های رادار گریز از کامپوزیت‌ها استفاده می‌شود. همچنین در ساخت قطعات هواپیما و پره نیروگاه بادی و پره هلیکوپتر از کامپوزیت‌ها استفاده می‌شود. بطور کلی کامپوزیت های پلیمری به دلیل داشتن جرم بسیار کم و مقاومت بالا نسبت به فلزات، در صنعت هوا و فضا کاربرد وسیعی دارند. هم چنین کامپوزیتهای کربن-اپوکسی از نوع کامپوزیت های استحکام بالا هستند که در صنایع نظامی کاربرد دارند.

 

کامپوزیت‌های با زمینه فلزی (MMC ) :

در کامپوزیت های زمینه فلزی زمینه عبارت است از یک فلز انعطاف پذیر . برتری های این نوع کامپوزیت نسبت به کامپوزیت های زمینه پلیمری شاکل دمای عملکرد بالاتر ، شعله پذیر نبودن و مقاومت بیشتر در برابر تهاجم سیالات آلی است . البته هزینه آنها بیشتر و در نتیجه استفاده از آنها محدود تر است . از سوپر آلیاژها ، آلیاژهای آلومنییم و منیزیم ، تیتانیم و مس به عنوان مواد زمینه استفاده می شود .

موادتقویت کنند ه ممکن است به شکل ذرات ، رشته های پیوسته و ناپیوسته و یا ویسکرها باشند که 10 الی 60% حجمی کامپوزیت را تشکیل می دهد رشته های پیوسته شامل کربن ، کاربید سیلیسیم ، بور ، آلومینا و فلزات دیر گداز است رشته های ناپیوسته از ذرات همین مواد تشکیل می شوند از یک جهت می توان سرمت ها را جز این (MMC ) ها قرار دارد.

خودرو سازان اخیرا در محصولات خود شروع به استفاده از کامپوزیتهای زمینه فلزی کرده اند به عنوان نمونه برخی قطعات موتور از زمینه آلیاژهای آلومینیم تقویت شده با رشته های آلومینا و کربن تولید شده که سبک وزن تر هستند و مقاومت آنها در برابر سایش و اعوجاج حرارتی بیشتر است استفاده از این نوع کامپوزیت ها در محورهای محرک که سرعت چرخش بالاتر و میزان کمتر سرو صدای ناشی از ارتعاش را به همرا دارد صورت گرفته است . صنایع هوا فضا نیز از این نوع کامپوزیت ها بهره می برد به عنوان نمونه در قطعات تلسکوپ فضائی هابل از رشته های گرافیتی پیوسته استفاده شده است.

 

 

دسته‌بندی کامپوزیت ‌ها از لحاظ نوع تقویت کننده

 

کامپوزیت‌های تقویت شده با فیبر (FRC ) :

از لحاظ تکنولوژیکی، مهمترین کامپوزیتها آنها هستند که فاز پراکند ه شده به شکل رشته است. کامپوزیتهای رشته ای تقویت شده استحکام و یا سفتی بالائی دارند . این ویژگی به عنوان عواملی نظیر استحکام ویژه و مدول ویژه بالا می شود دو زیر گروه این دسته از کامپوزیتها بر اساس طول رشته تعیین می شوند . خواص مکانیکی این کامپوزیت ها به خواص رشته و میزان نیروی منتقل شده به رشته از سوی فاز زمینه بستگی دارد .بنابراین طول بحرانی رشته در استحکام دهی و سفت سازی موثر کامپوزیت نقش دارد.

خواص مکانیکی این نوع کامپوزیت ها به رفتار تنش– کرنش رشته و فاز زمینه ، درصد حجمی فاز و جهت اعمال نیرو بستگی دارد همسو بودن رشته ها ، رفتار غیر همسو را در خواص به دنبال دارد . در این حالت بسته به جهت طولی اعمال نیرو جهت عرضی و عمود برجهت رشته ها رفتار تنش- کرنش متفاوت خواهد بود .

هر چه قطر رشته کوچکتر باشد ، رشته مستحکم تر از ماده زمینه خواهد بود. موادی که بعنوان رشته های تقویت کننده بکار میرود استحکام کششی بالایی دارند.براساس قطر و مشخصه رشته ها به 3 دسته تقسیم می شوند: ویسکرها ،رشته ها و سیم ها. ویسکر ها تک بلورهای بسیار نازکی هستند که نسبت طول به قطر آنها فوق العاده زیاد است.آنها مستحکم ترین موادی هستند که شناخته شده اند. مواد ویسکری شامل گرافیت ، کاربید سیلیسیم، نیترید سیلیسیم و اکسید آلومینیم است.

 

کامپوزیت‌های تقویت شده توسط ذرات (PRC ) :

فاز پراکنده شده در کامپوزیت های تقویت شده با ذرات هم محور و همسواست ، یعنی ذرات تقریبا در همه جهات همسو هستند. دو زیر دسته این نوع کامپوزیت ها عبارتند از : کامپوزیت های درشت ذره و مستحکم شده به وسیله پراکندگی ذرات .تفاوت این دو گروه به مکانیزم مستحکم شدن یا تقویت شدن بستگی دارد واژه درشد بدین جهت استفاده می شود که نشان دهد فعل و انفعال بین ذره – زمینه نمی تواند در مقیاس اتمی یا مولکولی صورت گیرد ومکانیک محیط های پیوسته استفاده می شود . در بیشتر این نوع کامپوزیت ها ، فاز پراکنده سخت تر وسفت تر از زمین است این ذرات تقویت شده جابجائی و حرکت فاز زمینه را در مجاور خود و مهار ومتوقف می کنند. اساسا زمینه ، مقداری از تنش اعمال شده را به ذرات منتقل می کنند . میزان تقویت شدن یا بهبود رفتار مکانیکی به استحکام پیوند در فصل مشترک زمینه – ذره بستگی دارد . در کامپوزیت های مستحکم شده با ذرات پراکنده ، ذرات معمولا بسیار کوچکتر هستند و اندازه آنها بین nm 10  تا nm 100 است. فعل وانفعال ذره – زمینه که به مستحکم شدن منجر می شود در مقیاس اتمی یا مولکولی رخ می دهد. بنابر این تغییر شکل مومسان مشکل می شود و استحکام کششی ، تسلیم و سختی بهبود می یابد.

 کامپوزیت های درشت ذره :

آشناترین کامپوزیتهای درشت ذره بتون است که زمینه آن سیمان است وذرات شن ماسه در آن وجود دارد . تقویت شدن موثر مستلزم آن است که ذرات بخوبی در زمینه پراکنده شده باشد. کامپوزیت های درشت ذره با هرسه نوع ماده ( فلزات ، پلیمرها، سرامیکها ) مورد استفاده قرار می گیرند . سرمتها نمونه کامپوزیتهای سرامیک–فلز هستند . معروف ترین سرمتها کاربید های سمانته هستند که از ذرات بسیار سخت یک سرامیک کاربیدی دیرگداز مثل کاربید تنگستن (wc ) یا کاربید تیتانیوم  (TiC ) در زمینه از یک فلز مثل کبالت یا نیکل تشکیل شده اند . از این کامپوزیتها به عنوان ابزار فولادهای سخت کاری شده استفاده می شود . ذرات خاصیت برشی را ایجاد می کنند و زمینه ، از بهم پیوستن این ذرات ترد وامکان اشاعه ترک از طریق آنها جلوگیری به عمل می آورد . دیرگداز بودن زمینه و ذرات باعث می شود که دمایی که در اثر برش مواد بسیار سخت ایجاد می شود تحمل شود . هیچ ماده ای به تنهایی ترکیب خواص سرمت را نمی تواند داشته باشد. درصد حجمی ذرات میتواند تا 90% افزایش یابد و عمل سایندگی و برش را به حداکثر برساند.

الاستومر ها و پلاستیک ها غالبا با ذرات مختلفی نظیر کربن سیاه تقویت می شوند. کربن سیاه ذرات بسیار ریز و کروی شکل کربن هستند که از طریق احتراق گاز طبیعی یا روغن در محیطی کم هوا تولید می شود . این ماده ارزان وقتی به لاستیک ولکانیزه شده افزوده می شود استحکام کششی، چقرمگی و مقاومت سایندگی و گسیختگی را افزایش می دهد . تایر خودرو محتوی 30%-15% حجمی کربن سیاه است . اندازه ذرات nm   50-20است. ذرات کربن سیاه پیوند چسبنده مستحکمی با ماده لاستیک برقرار می سازند در حالی که سایر مواد مثل سیلیس چنین نیستند.

بتن یک کامپوزیت معروف ازنوع درشت ذره است که درآن هردوزمینه فازپراکنده شده،موادسرامیکی هستند.

 کامپوزیتهای مستحکم شده با ذرات پراکنده

فلزات و آلیاژهای فلزی را می توان با پراکنده سازی یکنواخت چند درصد حجمی ذرات ریز از یک ماده سخت و خنثی مستحکم نمود . فاز پراکنده شده فلزی یا غیر فلزی است . غالبا از مواد اکسیدی استفاده می شود . مکانیسم استحکام دهی در اینجا مانند سخت کاری رسوبی شامل فعل وانفعال بین ذرات و نابجائی ها درون زمینه است [2].

نانو كامپوزیت ها

فن آوری نانو و تولید مواد در ابعاد نانومتر، موضوع تحقیقاتی جذابی است كه دردهه اخیر توجه بسیاری را به خود جلب كرده است. نانو كامپوزیت ها نیر به عنوان یكی از شاخه های این فنآوری جدید، اهمیت بسیاری یافته اند و یكی از زمینه های تحقیقاتی فعال به شمار می آیند.

علاقه به نانو كامپوزیت ها در سراسر جهان سبب شده است كه بسیاری از مراكز پژوهشی به مطالعه كاربردهای بالقوه این مواد بپردازند. نخستین تلاشهای موفقیت آمیز درتهیه نانو كامپوزیتها به دهه های شصت و هفتاد قرن بیستم میلادی بر می گردد. با این وجود با تهیه نانو كامپوزیت هایی برپایه نایلون 6 و خاك رس در سال 1980 توسط شركت ژاپنی تویوتا بود كه تحقیقات برای ساخت این مواد شدت و سرعت بیشتری گرفت. پس از آن نیز شركتهای Ube ،  Unikita ، Honeywell كامپوزیت هایی برپایه نایلون 6 ارایه كردند كه عمده كاربرد آنها در خودروسازی و صنایع بسته بندی بود.

از آن پس شركت های دیگری نیز نانو كامپوزیتها را برای كاربردهای تجاری مورد مطالعه قرار داده اند و در اواخر سال 2001 شركت های جنرال موتورز و باسل Bassel نخستین نانو كامپوزیتها را با پایه اولفین های گرمانرم برای كاربرد در قطعات بیرونی خودرو عرضه كردند.

نانو كامپوزیت ماده ای است كه دست كم یكی از اجزای تشكیل دهنده آن درابعاد نانو متر (100-1 نانو متر) باشد. پودرهای نانو كامپوزیتی نیز وجود دارند كه شامل چندین نوع پودر گوناگون با اندازه هایی درمحدوده نانو متر هستند. اندازه دراین مواد بسیار مهم است. بسیاری از ویژگی های فیزیكی با بی نهایت كوچك شدن ذرات به شدت افزایش می یابند. دستیابی به مخلوطی درحد مولكولی از اهداف مهم دانشمندان است.

باید توجه داشت كه تنها افزودن نانو ذرات به یك زمینه، منجر به ایجاد ویژگی های فوق العاده نخواهد شد. بلكه این تركیب باید شرایطی را داشته باشد. مثلا فرض كنید یك سری ورقه های پركننده به كامپوزیت افزوده شده باشد. اگر ورقه های كوچك معدنی به صورت متراكم به هم چسبیده باشند، رفتار این كامپوزیت تفاوت چندانی با كامپوزیت های معمولی ندارد. با عملیات حرارتی سطحی، فضای بین ورقه های معدنی افزایش می یابد و مولكولهای پلیمر بهتر می توانند بین ورقه ها حركت كنند.

نانو كامپوزیت ها به دو صورت ممكن است وجود داشته باشند. درحالت اول، زمینه ماده ای است با دمای ذوب پایین همانند پلیمر، سرامیك یا فلزی زود ذوب كه با فاز دومی از جنس مواد با دمای ذوب بالا همانند سرامیك ها یا فلزات تقویت میشود. درحالت دوم، زمینه ماده ای سرامیكی یا فلزی با دمای ذوب بالا و فاز دوم ماده ای پلیمری، سرامیكی یا فلزی است. به این ترتیب انواع نانو كامپوزیتها عبارتند از :

                    · نانو كامپوزیت های پلیمری

                    · نانو كامپوزیت های سرامیكی

                    · نانو كامپوزیت های سرامیك - فلز

                    · نانو كامپوزیت های زمینه فلزی

 

          نانو كامپوزیت های زمینه فلزی

به طور کلي روش‌هاي ساخت نانوکامپوزيت‌هاي زمينه فلزي را مي‌توان به سه دسته طبقه‌بندي کرد :

                    · روش مايع (ريخته‌گري)

                    · روش متالورژي پودر

                    · آلياژسازي مکانيکي

         

          روش ريخته‌گري

در روش ريخته‌گري، ذرات تقويت کننده به فلز مذاب اضافه شده و به صورت مکانيکي در داخل فلز توزيع مي‌شوند. مهم‌ترين معايب روش ريخته‌گري جدا شدن ذرات از فاز مذاب است. تر نشدن ذرات فاز دوم به وسيله‌ي آلومينيوم مذاب و جدا شدن فاز نانوذره، منجر به ايجاد ساختاري ناهمگن مي‌گردد. گاهي نيز انجام واکنش بين نانوذرات و فاز مذاب سبب افت خواص مکانيکي مي‌گردد. به طور مثال در توليد نانوکامپوزيت Al /SiC  به روش ريخته‌گري، واکنش بين ذرات SiC و فاز مذاب، سبب تشکيل فصل مشترک ترد و نامطلوب Al4 3C و Si شده که منجر به خواص مکانيکي نامطلوب مي‌گردد.

يانگ و همکاران‌اش اخيراً روش جديدي را براي ساخت نانوکامپوزيت‌هاي زمينه فلزي ابداع کرده‌اند که در آن نانوذرات به فلز مذاب افزده شده و با اعمال امواج مافوق صوت (اولتراسونيک ) به فلز مذاب، از چسبيدن ذرات به يکديگر جلوگيري مي‌گردد. در اين روش از طريق امواج مافوق صوت، هزاران ميکروحباب در داخل فلز مذاب تشکيل شده که با واپاشي آن‌ها در زماني بسيار کوتاه، تجمع ذرات نانومتري از بين مي‌رود و امکان چسبيدن ذرات به يکديگر کاهش مي‌يابد. لذا، ذرات داخل فلز مذاب پخش شده و توزيع يکنواختي از نانوذرات در داخل ساختار به وجود مي‌آيد.

اين روش کاملاً مبتني بر ريخته‌گري است و محققان در اين روش نانوذرات را پس از ذوب زمينه، از بالاي بوته اضافه مي‌کنند. نکته‌ي قابل توجه افزايش ويسکوزيته‌ي فلز مذاب با افزايش درصد حجمي نانوذرات است که براي حل اين مشکل، دماي مذاب را افزايش مي‌دهند.

 

          روش متالورژي پودر

در اين روش، پودرهاي آلياژي يا خالص فلزي با نانوذرات مخلوط مي‌گردند و سپس با پرس کردن ذرات پودر در داخل قالب و تف جوشي، ذرات پودري به يکديگر متصل مي‌شوند و با کاهش درصد حفره‌ها، چگالي افزايش مي‌يابد. روش متالورژي پودر در مقايسه با روش ريخته‌گري داراي مزاياي زير مي‌باشد :

                    · در حالت جامد-‌ جامد، واکنش بين فاز دوم و زمينه به حداقل مقدار ممکن مي‌رسد.

                    · امکان کنترل دقيق حجم فاز دوم به اين روش ممکن است.

                    · امکان کنترل ضريب انبساط حرارتي و مدول کامپوزيت متناسب با کاربرد آن در اين روش وجود دارد.

اين روش البته، معايبي هم دارد. از قبيل: احتمال تجمع ذرات فاز تقويت کننده و توزيع غيريکنواخت آن‌ها در ساختار کامپوزيت، تفاوت اندازه ذرات فاز زمينه و تقويت کننده. اختلاف چگالي ذرات و باردار شدن آن‌ها مهم‌ترين دليل توزيع غيريک‌نواخت فاز تقويت کننده و تجمع ذرات است. يکي از روش‌هاي مبتني بر متالورژي پودر، روش پرس با سينتر هم‌زمان است که در طي آن ميکروپودرهاي زمينه با نانوذرات تقويت کننده در محفظه‌اي به مدت چند ساعت و با سرعت مشخص مخلوط مي‌شوند تا در نهايت، تحت فشاري با هم فشرده شوند.

 

          آلياژسازي مکانيکي

شايد بتوان گفت در حال حاضر آلياژسازي مکانيکي مهم‌ترين روش توليد نانوکامپوزيت‌هاي زمينه‌ي فلزي است. در اين روش، ذرات نانوپودري دو فاز با يکديگر آسياب مي‌شوند، و با تغيير شکل، جوش خوردن و شکست ذرات به صورت مکرر انتقال مواد صورت مي‌پذيرد. در صورتي که ذرات نانوپودر ترکيب شيميايي يکساني داشته باشند و با عمليات خردايش فقط اندازه‌ي ذرات کاهش يابد، فرايند آسياب مکانيکي اتفاق مي‌افتد، ولي چنانچه آسياب مکانيکي با انجام واکنش شيميايي در حالت جامد- جامد و يا جامد- گاز همراه باشد، فرايند آسياب واکنشي ناميده مي‌شود. براي ايجاد پودرهاي کامپوزيتي مي‌توان با اضافه کردن مستقيم ذرات فاز تقويت کننده به ذرات زمينه و آسياب هم‌زمان اين ذرات، نانوپودرهاي کامپوزيتي تهيه کرد. با افزايش زمان آسياب کردن تحت انرژي زياد، مي‌توان ابعاد فاز تقويت کننده و حتي اندازه‌ي دانه‌هاي زمينه را تا حد نانومتر کاهش داد. قابل ذکر است که آسياب هم‌زمان، توزيع يکنواختي از ذرات نانومتري تقويت کننده در فاز زمينه را به دست مي‌دهد[3].

 

          نانو كامپوزیت های پلیمری

نیاز اقتصادی و رو به افزایش سوخت در عرصه های مختلف، تقاضا برای استفاده از مواد جدید سبک وزن مانند پلیمرها را افزایش داده است. اما از طرفی با توجه به پایین تر بودن میزان استحکام پلیمرها در مقایسه با فلزات، تقویت آن ها ضروری به نظر می رسد. تقویت پلیمرها با مواد رایج سبب لطمه خوردن به دو ویژگی اصلی پلیمرها یعنی سبکی و سهولت فرآیند پذیری می شود. از این رو در تحقیقات اخیر از مقادیر کمی (کمتر از 10% وزنی) نانوذرات به عنوان تقویت کننده در پلیمرها استفاده می شود.

فاز تقویت کننده که در نانوکامپوزیت ها استفاده می شود شامل نانوذرات، نانوصفحات ، نانوالیاف و همچنین نانولوله ها می باشد. نانوذرات بیشترین کاربرد را به عنوان ماده تقویت کننده در نانوکامپوزیت ها دارند. نانوذره ای که در تهیه اغلب نانوکامپوزیت ها استفاده می شود خاک رس است. اما اخیرا ً نانوذرات دیگری همچون سیلیکا، نانوذرات فلزی و ذرات آلی و غیرآلی نیز مورد استفاده قرار می گیرد.

 

به طور کلی سه روش برای تولید نانوکامپوزیت های زمینه پلیمری وجود دارد. این روش ها شامل مخلوط سازی مستقیم ، فرآوری محلول  و پلیمریزاسیون درجا  می باشد.

 

 مخلوط سازی مستقیم

در این روش ابتدا نانوذرات تهیه شده به صورت سوسپانسیون در یک حلال حل شده و سپس به محلول پلیمری اضافه می شود و مخلوط حاصله توسط یک پرس هیدرولیک در یک قالب اکسترود می شود و در نهایت صفحات نازک به دست می آیند. در این روش انتخاب بستر پلیمری، انتخاب نوع ذارت و سازگاری این دو گونه با یکدیگر و نحوه ی توزیع ذرات از نکات حائز اهمیتی است که بایستی بر آن فائق آییم.

معمولا ً برای تولید نانوکامپوزیت های زمینه پلیمری حاوی نانوالیاف کربنی از این روش استفاده می شود. محدودیت این روش میزان فاز تقویت کننده یا همان مواد پرکننده است. به عنوان مثال برای تولید نانوکامپوزیت سیلیکا/پلی پروپیلن حداکثر میزان نانوذرات سیلیکا 20 درصد وزنی می تواند باشد. البته به نظر می رسد آگلومره شدن (به هم چسبیدن) ذرات نیز از دیگر محدودیت های این روش باشد.

فرآوری محلول 

با استفاده از این روش می توان بر بعضی از محدودیت های روش مخلوط سازی مستقیم غلبه کرد، ضمن آنکه می توان میزان آگلومراسیون و کلوخه ای شدن نانوذرات در ماده پلیمری را کاهش داد. در این روش به دو صورت می توان نانوکامپوزیت های پلیمری را تولید کرد. اگر مادهء زمینه پلیمری و نانوذرات تقویت کنندهء آن در یکدیگر قابل حل شدن باشند، محلول حاصل را می توان در یک قالب ریخته گری کرده و نانوکامپوزیت تولید نمود. در غیر این صورت مخلوط مواد نانوکامپوزیت در یک حلال حل شده و در نهایت با تبخیر حلال، نانوکامپوزیت مورد نظر به دست می آید.

پلیمریزاسیون درجا

در این روش پلیمریزاسیون بستر پلیمری در حضور نانوذرات انجام می شود و منومر در حین رشد، ذرات پر کننده را در بر می گیرد. نکته کلیدی در این روش نحوه توزیع ذرات نانو در منومر است. با کنترل پیوند بین ذرات نانو و ماده زمینه، می توان توزیع مورد نظر را به دست آورد. بسیاری از نانوکامپوزیت های زمینه پلیمری را می توان با این روش تولید کرد.

به طور مثال نانوکامپوزیت های حاوی نانولایه های گرافیت که دارای هدایت الکتریکی بالا و نفوذ پذیری کمی هستند، از این روش تولید می شوند. برای تولید این نانوکامپوزیت ها ابتدا با امواج مافوق صوت  لایه های گرافیت در منومر به صورت یکنواخت توزیع می شوند و در نهایت با پلیمریزاسیون درجا نانوکامپوزیت به دست می آید.

نکته ای که در روش های تولید نانوکامپوزیت های پلیمری اهمیت دارد و آن را از یکدیگر متمایز می کند، توزیع مناسب مادهء پر کننده است. با اصلاح سطحی  می توان این توزیع را به شکل یکنواخت به گونه ای انجام داد که از آگلومراسیون اجزای نانومتری مادهء پرکننده جلوگیری شود و توزیع مناسب فاز تقویت کننده فراهم گردد. در واقع نکته مهم در تمام این فرآیندها، اصلاح فصل مشترک بین پلیمر و نانوذره می باشد. استفاده از فرایندهای سطحی سبب توزیع یکنواخت فاز تقویت کننده در بستر پلیمری شده، افزایش مدول و استحکام نانوکامپوزیت را به دنبال خواهد داشت[4]. 

 

 

 

 

 

مراجع :    

1. M .Z.Rong , M.Q.Zhang , Y.X.Zhang , K.Friedrish , Polymer 42, (2001), 3301

2. G.Caroteuto, Y.S.Her, E.Matijevic, Ind. Eng. Chem. RES 35, (1996), 2929.

3. فتح الله کریم زاده، احسان قاسمعلی، سامان سالمی زاده "نانومواد؛ خواص، تولید و کاربرد" جهاد دانشگاهی واحد صنعتی اصفهان، 1384 نویسنده: مریم ملک دار

4. سیده رویا هاشمی نسب، سیدمجتبی میرعابدینی، منوچهر خراسانی، محمدرضاکلائی. 1392. اصلاح نانو ذرات سیلیکا با متاکریلواکسی پروپیل تری متوکسی سیلان و بررسی اثر نانو ذرات اصلاح شده بر پلیمریزاسیون درجای کوپلیمر استایرن- بوتیل اکریلات. علوم و فناوری رنگ 1. 37-46.



  • برچسب ها:
  • کامپوزیت,
  • ماتریس,
  • تقویت کننده,
  • زمینه پلیمری,
  • زمینه سرامیکی,
  • زمینه فلزی,
  • فیبر,
  • نانو کامپوزیت,
  • چقرمگی شکست,
  • ویسکر,
  • فایبر گلاس,
  • کاربید سیلیسیم,
  • نیترید سیلیسیم,
  • الاستومر,
  • آلياژسازي مکانيکي,
  • پلیمریزاسیون,
  • فرآوری محلول,
  • مخلوط سازی مستقیم,
  • نانوالیاف,
  • سیلیکا,
  • نانوالیاف,
  • نانولوله,
  • نانوصفحات,
  • ميکروپودر,
  • فاز دوم,
  • نانو كامپوزیت های زمینه فلزی,
  • فازپراکنده,
  • سرمت,
  • رزین,
  • نيتريدسيليسيوم,
  • فاز زمینه,
  • ,
اشتراک

مطالعه دیدگاه


دیدگاه خود را بنویسید

*
*
* *
*



mserc

خط و مشی مرکز تحقیقات ارائه خدمات در کوتاه ترین زمان با مناسب ترین هزینه و کم ترین قیمت میباشد. هدف ما ایجاد اعتماد برای همکاری بلند مدت می باشد.

سمینارها

  • اولین کنگره بین المللی مهندسی بافت و پزشکی بازساختی ایران
  • ۱۳ آبان چهارمین همایش و نمایشگاه ملی تجهیزات و مواد آزمایشگاهی صنعت نفت ایران
  • سومین جشنواره ملی و کنگره بین المللی علوم و فناوری های سلول های بنیادی و پزشکی بازساختی
  • ششمین کنفرانس بین المللی کامپوزیت،مشخصه سازی،ساخت و کاربرد
  • پانزدهمین همایش علمی دانشجویی مهندسی مواد و متالورژی ایران

ارتباط با ما

  • تهران، اتوبان باکری جنوب خروجی بلوار فردوس خ بنفشه خ گلها
  • تلفن: 22128545-021/ ساعت کاری:8-16:30
  • Mserc.center@gmail.com

طراحی شده توسط طراحان پویا